
ICT159 Lecture Notes Topic 6 – Page 1

Topic 6 –Arrays
SIMPLE VS COMPLEX TYPES
 Data types are critically important in that they determine the

properties of the variables and values being processed.
 All of the data types we have dealt with so far have been built

into the language.

 For example, char, int, and float are all part of C.

 These built-in types are called simple or primitive data

types.

 In general these cover the majority of different types of data

that we need to store and process in our programs.

 However, sometimes they are not enough and we need to

create our own data types.
 These new types are no longer built-in and they are called

complex data types.

 Complex data types are created by joining together the

simple data types that are built into the language.
 In this case, complex means made up of multiple parts,

rather than difficult.

 In this topic we will be start looking at one of the major
complex data types: the array.

ICT159 Lecture Notes Topic 6 – Page 2

INTRODUCING ARRAYS
What are Arrays?

 So far we have made programs that contain a small number of
variables.

 However, if we have lots of data to store, this soon becomes
impractical.

 An array is a complex data type that groups together a
number of different values of the same type into a single
structure.

 The advantage of using an array is it becomes easy to create

algorithms to solve problems that otherwise would be very
difficult and time-consuming to deal with.

 An array is defined as a contiguous block of memory

holding n items, called elements, of a given type.

 Each of these elements is assigned a number to identify it.
 This value is called an index.
 The index value starts at 0.

 For example, the following is an array storing 10 integers:

0 1 2 3 4 5 6 7 8 9

5 2 3 8 14 2 24 11 6 3

index

elements

ICT159 Lecture Notes Topic 6 – Page 3

Array Advantages
 So instead of having lots of separate variables, each storing

a value, we can have a single variable storing many pieces
of data.

 There are a number of advantages to this.

 First, unlike ordinary variables, the elements in an array do
not need to be declared individually.

 This means we can create as many pieces of data as we
like simply by specifying the number of elements.

 For example, to create an array with holding 10,000

integers, we just have to specify this size.

 As indicated before, index values given to array elements
always begin at 0.

 Therefore, the first element in this array of 10,000

elements would be 0 and the last element would be 9999.

 The second big advantage is that processing all of the

elements in the array is (almost) as easy as processing a
single individual value.

 This makes working with a large amounts of data
extremely efficient when using an array.

We will now look at examples of both of these properties.

ICT159 Lecture Notes Topic 6 – Page 4

Declaring Arrays
 Despite being very powerful, arrays are quite easy to use.

 Like variables they must be declared before you can use

them and you need to specify the type of the array, its size
and its name.

 The line of code below creates a new array called myNums
containing 50 integers:

 int myNums[50];

 Note: the number 50 here is the array's size, which is the
number of elements the array contains.

 When declaring an array, the number in the square brackets
represents the size of the array.

 However, it is important to note that, after declaration, the
number in the square brackets refers to something slightly
different.

 Specifically, after the array has been declared, the number in
the square brackets becomes an index.

ICT159 Lecture Notes Topic 6 – Page 5

Accessing Array Elements
 Once created you can then access specific elements within

the array by their index.
 Remember that array elements are numbered from 0 to

one less than the size of the array:

/* Put values in the first and last elements

of the myNums array */

myNums[0] = 0;

myNums[49] = 0;

 By indexing a specific element in the array, you can treat
this just like a variable of that particular type.

 Note that element with index 49 is actually the 50th and
last element in the array.

 This is because array numbering begins at 0.

 In other words myNums is an array and has certain special

properties but myNums[0] behaves just like a normal int.

 Also note that the value inside the square brackets can be

anything that evaluates as an integer.
 This includes literal values, arithmetic expressions or even

integer return values from function calls.
 For example:

const int SIZE=50;

…

 int myNums[SIZE];

myNums[49] = 5;

myNums[SIZE-1] = 5;

Assuming the declaration of the constant, the last two lines
are equivalent.

ICT159 Lecture Notes Topic 6 – Page 6

Why are Arrays Useful?
 The best way to understand why arrays are so useful is to

look at an example of how they work.

 Assume we have a class made up of just three students and

we want to write a program to calculate the average grade
for the class.

 Part of the code to solve this problem might look like:

/* Number of students. */

const int NUMBER_OF_MARKS = 3;

/* One variable required for each mark. */

int mark1, mark2, mark3;

/* Variables to store the totals and average.

*/

int total = 0;

float avg;

scanf(“%d%*c”, &mark1);

scanf(“%d%*c”, &mark2);

scanf(“%d%*c”, &mark3);

/* Add up marks */

total = mark1 + mark2 + mark3;

/* Calculate average but note that total must

be cast to a float to ensure floating

point division.

*/

avg = ((float) total)/ NUMBER_OF_MARKS;

printf(“Average = %f\n“, avg);

ICT159 Lecture Notes Topic 6 – Page 7

 A pretty simple program, right?

 But it has an obvious problem...

 If the number of students starts to get larger, the amount
of code we have to write increases proportionally.

 This might be alright if there is only five or perhaps
even 10 students.

 But if the class has 200 students then there will be a lot
of pointless typing needed!

 In other words... the solution does not scale.

 However, by using arrays we can write a program that will

scale very easily.
 Instead of creating separate variables to store each mark we

can create a single array with the appropriate number of
elements.

 Using three separate variables this is stored in memory as:

 By creating an array all variables are stored under one name

but can be accessed separately via their index:

72 54 68

mark1 mark2 mark3

54 68 72

0 1 2

marks

ICT159 Lecture Notes Topic 6 – Page 8

 Here is the same program fragment implemented using an
array:

/* The number of students – now easily changed */

const int NUMBER_OF_MARKS = 3;

int total = 0;

float avg;

/* A counter variable for accessing array elements.

*/

int index;

/* Define a new array to store all of the values. */

int marks[NUMBER_OF_MARKS];

/* for loops are very commonly used to process

arrays*/

for(index = 0; index < NUMBER_OF_MARKS; index++)

{

/* Read in mark and add it to the running total.

*/

 scanf(“%d%*c”, &marks[index]);

 total = total + marks[index];

}

avg = ((float) total) /NUMBER_OF_MARKS);

printf(“Average = %f\n“, avg);

ICT159 Lecture Notes Topic 6 – Page 9

 Things to note:
 We use a for loop to iterate through the array because

we know the size of the array.

 The loop's counter variable index is used to access
each element in the array.

 Because of this index starts at 0 and goes up to one

less than NUMBER_OF_MARKS which is the size of the
array.

 By using the size of the array as a constant throughout
the code, we can easily change the number of students

by changing the value of NUMBER_OF_MARKS.

 Note that marks[index] behaves just like an ordinary

int.

ICT159 Lecture Notes Topic 6 – Page 10

BASIC ARRAY OPERATION
 Working with arrays is generally very simple and

involves the use of a for loop:
o The principle is to apply the logic for processing a

single array element to the entire array by looping
through it.

o For each iteration, a different array element will be
processed based upon the counter variable of the
for loop.

#include <stdio.h>

const int SIZE = 5;

int main()

{

 int array[SIZE];

 int i;

 for(i = 0; i < SIZE; i++)

 {

 printf(“Enter element %d: ", i);

 scanf(“%d%*c”, &array[i]);

 }

 printf(“Array contents are:\n");

 for(i = 0; i < SIZE; i++)

 {

 printf(“ Element %d is %d\n“, i, array[i]);

 }

 return(0);

}

ICT159 Lecture Notes Topic 6 – Page 11

ADVANCED ARRAY USAGE
Array Declarations
 We've already seen how empty arrays can be declared:

 float scores[35];

 However, you can also declare arrays and initialise them to

a set of values, just like with ordinary variables:

int shutter[] = {30, 60, 125, 250, 500};

float aperture[] = {2.8, 4.0, 5.6, 8.0,

 11.0};

 Obviously this is only practical for small arrays.

 Note that specifying the array size when initialising an array
is optional.

 However, if you do specify the size of the array but do not
provide enough initial elements to fill it, the remaining
elements will be automatically initialised to 0.

 This can be used as a shortcut for initialising a large array to
0.

 For example:

int scores[100] = {0};

ICT159 Lecture Notes Topic 6 – Page 12

Static vs Dynamic Arrays
 The C language allows for both static and dynamic arrays.
 Static arrays are those where the size of the array is defined

by the programmer when they write the program.
 The examples from this topic are static arrays.

 Dynamically allocated arrays are those where the program

calculates the size an array needs to be and creates the array
of this size while the program is running.

 This means that the programmer does not need to fix the
maximum size of the array.

 In this unit we will only cover static arrays, as dynamic arrays
are more difficult to work with in C.

 If you go on and study further programming units, it is
likely you will work with dynamic data structures.

 However, in this course this limitation means you will need
to sometimes estimate or fix the maximum amount of data
to be stored in an array, and then ensure that this limit is not
exceeded.

ICT159 Lecture Notes Topic 6 – Page 13

Bounds Checking
 Creating an array gives you an area of memory to store as

many pieces of data as you specify.
 Some languages keep track to make sure you stay within

this area — called bounds checking.
 However, C does not do this.

 This can lead to some subtle errors where your program

attempts to access array elements that don't exist.
 These errors will likely lead to your program behaving

strangely, or very probably crashing.

 This most commonly happens when you forget that array
numbering begins at 0.

 Examples for an array declared as:

 const int SIZE = 20;

 int nums[SIZE];

 nums[20] = 5;

or:
for(i = 0; i <= SIZE; i++)

{

 printf(“Enter element %d: ", i);

 scanf(“%d%*c”, &nums[i]);

}

Both of these errors occur because the program attempts to

access an element one passed the end of the array.

ICT159 Lecture Notes Topic 6 – Page 14

Array Size
 Partly because of this, keeping track of the size of an array is

very important.
 This is achieved in two ways.

 Firstly, the size of an array issue should always be defined as
a constant; for example, at the top of the program.

 This constant should then always be used whenever you
need to reference the size of the array.

 For example, when processing the array with a for
loop.

 This also makes it easy to change the size of the array later
on.

 Secondly, when passing an array into a function as a
parameter, always pass its size also as the next parameter.

 This means the size of the array is always available.
 It also keeps the function independent of where the

array size is defined.

 We will now look at some examples of passing array data
as parameters.

ICT159 Lecture Notes Topic 6 – Page 15

Passing Arrays as Parameters
 Because arrays occupy much more memory than single

variables, these are always automatically passed by
reference without using an &.

 Passing by reference avoids the need to duplicate often
huge amounts of data as would happen if passing by value.

 Therefore, when you pass an array into a function, any values

you put into the array remain there when you return.
 However, it is not as easy to create an array in a function and

get this new array back.

 However, if the array is made up of a simple data type (e.g.,

int) then passing of individual array elements will not be
automatically by reference.

Here is some code ent showing the passing of a whole array:

void MyFunc (int param[], int size)

{

 param[0] = 20; /*change 1st element to

 something*/

 return;

}

int main()

{

 int marks[5] = {0};

 printf(“Before call marks[0] is %d“, marks[0]);

 /* value should be 0 – the default value */

 /* pass single array element as parameter */

 MyFunc(marks, 5);

 printf(“\nAfter call marks[0] is %d“, marks[0]);

 return(0);

}

ICT159 Lecture Notes Topic 6 – Page 16

However, here is an example passing a single array element:
void MyFunc (int param)

{

 param = 20; /*change 1st element to

 something*/

 return;

}

int main()

{

 int marks[5] = {0};

 printf(“Before call marks[0] is %d“, marks[0]);

 /* value should be 0 – the default value */

 /* pass entire array as parameter */

 MyFunc(marks[0]);

 printf(“\nAfter call marks[0] is %d“, marks[0]);

 return(0);

}

 In this case, the single integer element is passed by value and
the change inside the called function only applies to that
parameter.

 Therefore, the assignment inside MyFunc() has no effect on
the contents of the original array.

 This reinforces the fact that individual array elements are

treated in exactly the same way as ordinary variables of that
type.

 Note that, as far as MyFunc()knows, it is receiving only an
ordinary integer.

 The fact that this integer comes from an array makes no
difference.

ICT159 Lecture Notes Topic 6 – Page 17

Operations on Arrays
 Primitive, built-in data types like int have a set of built-in

operators that can be used on them.

 For example, if we have two integer variables a and b then
the following statements are valid:

 sum = a + b;

 ...

 a = b;

 ...

 if(a == b)

 ...

 However, in general operators like sum and assignment do

not work on complex data types like arrays.
 For example it may not be possible to simply add two

arrays together, e.g., if they are different sizes.

 Similar limitations apply to assignment and testing for

equality.

 So, in general, most built-in operators cannot be used at all

on complex data types.

 If you want to add the contents of one array to another,

copy the values from one array to another or test two arrays
for equality then you have to write the code to do this
yourself.

 So be careful not to use built-in operators on complex data

types when writing your programs.

ICT159 Lecture Notes Topic 6 – Page 18

COMMON ARRAY

ALGORITHMS
Finding the Maximum and Minimum
 A common task that arises is to search through an array and

find either the maximum or minimum (or both) values
contained within it.

Here is a simple algorithm to implement this:

 max = array[0]
 for i = 1 to array.size
 if array[i] > max
 max = array[i]

 print “The largest element in the array is ”, max

This algorithm can be easily adapted to find the minimum as
well.

ICT159 Lecture Notes Topic 6 – Page 19

Here is some code to implement this algorithm:

#include <stdio.h>

const int SIZE = 8;

int main()

{

 int array[SIZE] = {-20, 19, 1, 5, -1, 27, 19,

5};

 int max;

 int i;

 /* initialize the current maximum */

 max = array[0];

 /* scan the array */

 for(i = 1; i < SIZE; i++)

 {

 if(array[i] > max)

 max = array[i];

 }

 printf("The maximum of this array is: %d\n",

 max);

}

ICT159 Lecture Notes Topic 6 – Page 20

Linear Search
 Linear search is just a fancy way of saying “start at the

beginning and work your way through.”

 If you are looking for a specific element in an unsorted

array then a linear search is the only way you have of
finding that element.

 By iterating through the array until you find what you are

looking for you will have to check, at most, the entire array.
 If you are lucky though you may find the target on the first

try.
 However, on average you will have to search half of the

array.

 This means the time involved in completing the algorithm is
proportional to the amount of data being processed.
o In computer science terminology this means the order of

complexity of the algorithm is O(n) (i.e., proportional to
the number of elements).

Here is a code fragment to implement a simple linear search:
for(i = 0; i < SIZE; i++)

{

 if(array[i] == target)

 {

 found = 1;

 break;

 }

}

if(found)

 printf(“Target found at index %d\n“, i);

else

 printf(“Target was not found.\n”);

ICT159 Lecture Notes Topic 6 – Page 21

ARRAY SUMMARY
 Arrays are a complex data type that hold many elements of

a specific type bundled together with a single variable
name.

 However, each element is assigned a number and can be

specifically referenced.
 Elements are numbered from 0 up until one less than the

size of the array.

 Arrays are extremely useful for processing large amounts of

data that would otherwise be very difficult to manage.

 Because for loops are specifically designed for iterating a

fixed number of times these are very commonly used for
processing an entire array.

When defining and processing an array it is very important to
be aware of the array's size and ensure that you only access
elements that actually exist.

 Because arrays are complex data types most built-in

operators like + and = do not work on them.
 Instead you have to write your own code to process the

arrays.

ICT159 Lecture Notes Topic 6 – Page 22

THE WORD ON STRINGS
Introduction
 You may have noticed that so far in this unit we have

carefully avoided one particular form of data that is actually
very common.

 While computer programs deal easily with numbers,

because a lot of the data they process relates to humans,
they also have to deal with our languages.

 Strings are the data type for doing this.

 A string is simply a sequence or “string” of characters of a

given length.
 Specifically, a string can be zero or more characters in

length.

 Although very common, different programming languages

handle this quite differently.

 In C strings are usually implemented (more or less) simply

as an array of char's.

ICT159 Lecture Notes Topic 6 – Page 23

STORING STRINGS IN C
 Since a string in C is stored as a character array, the length of

this array can be defined either dynamically or statically.
 Again, in this unit, we are only going to work with

statically allocated strings for the sake of simplicity.

 This means that you need to decide the maximum number
of characters the string will store when writing the program.

 However, the actual string you store does not need to use

up all of these characters.

 So the length of the string may be less than the actual
size of the array it is stored in.

 Because of this, it is necessary to mark where the actual end
of the string is within the array.

 C does this using a special character called a null.

 The null character is essentially binary 0, has no printable
representation and can be represented using the symbol
'\0'

 This is similar to new-line characters '\n' etc.

 C functions that process strings therefore look for the null
character and use this to determine where the end of the
string is.

 We therefore say that strings in C are null terminated.

ICT159 Lecture Notes Topic 6 – Page 24

 There are a couple of additional issues in relation to null
terminated strings that need to be taken into account.

 Firstly, while functions processing strings can look for the

null character to mark the end of the string, unless explicitly
given this information, these functions do not know the size
of the array in which the string is stored.

 They will often keep processing until they find the null
character.

 It is therefore important to make sure that you stay
within the bounds of the array.

 Secondly, when creating a char array in order to store a
string, you need to allow for storing the null character.

 For example:

const int SIZE = 10;

char name[SIZE] = {'\0'};

can only store a name that is a maximum of 9 characters
long (NOT 10) because one character needs to be left to
store the null.

Also, if the name being stored is the full 9 characters long,
remember the last character in the name will be stored with
index 8 (because numbering begins at 0).

0 1 2 3 4 5 6 7 8 9

C h r i s t i a n \0

ICT159 Lecture Notes Topic 6 – Page 25

Finding the Size and Length of
Strings

 As just explained, the length of a string and the size of the
array which stores it, although related, are not the same.

 The size refers to the overall capacity of the array,
including the null character.

 The length of the string refers to the meaningful
characters stored within the array that make up the
string, not including the null character.

The size of the array containing the string will be whatever it
is declared as:

const int SIZE = 10;

char name[SIZE] = {‘\0’};

printf(“Capacity of array is: %d\n”, SIZE);

This statement will display the number 10.

 However, this only works in the function where the array is
declared.

 Inside other functions you should always pass the length of
the array as a separate value parameter (as discussed above).

 To calculate the length of the string in the array, you use the

strlen() function.
 Note that this does not include the null character.
 We will look at an example of this function shortly.

 Note, initialising the char array to all null characters as in

the examples here ensures that your string is always
properly terminated (... unless you mess it up!)

Initialise the
character array
to all null bytes.

ICT159 Lecture Notes Topic 6 – Page 26

Reading Strings
 There are many ways of reading in strings from the keyboard.
 Unfortunately these are all awkward and/or unreliable.
 This is the easiest, safest way.

char line[MAXSIZE] = {'\0'};

printf("Enter string: ");

fgets(line, MAXSIZE, stdin);

 This code reads in a string and stores it in the variable line.

 The second parameter gives the size of the array, which

prevents too much data being read.
 Note: if the input string is the same length as this or

greater, one character less than this will actually be
read and the last character will be made a null.

 The third parameter specifies that the data is being read
from the standard input, normally the keyboard.

ICT159 Lecture Notes Topic 6 – Page 27

 While the safest way of reading a string, this technique
has one disadvantage.

 When the user presses Enter to indicate the end of the

line, this new-line character is also stored in the string
variable and must be manually removed.

 This can be achieved with the following code:

line[strlen(line) - 1] = '\0';

 This stores a null character in the index of the last character in
the string, normally the new-line.

Before:

0 1 2 3 4 5 6 7 8 9

T e s t \n \0

After:

0 1 2 3 4 5 6 7 8 9

T e s t \0 \0

ICT159 Lecture Notes Topic 6 – Page 28

Here is a program that demonstrates all these concepts.

#include <stdio.h>

#include <string.h>

const int MAXSIZE = 10;

int main()

{

 char line[MAXSIZE] = {'\0'};

 printf("Enter string: ");

 fgets(line, MAXSIZE, stdin);

 printf("String entered was :%s:\n", line);

 printf("String length is %d.\n", strlen(line));

 printf("Array defined size is %d.\n", MAXSIZE);

 printf("Removing the new line character...\n\n");

 line[strlen(line) - 1] = '\0';

 printf("String entered was :%s:\n", line);

 printf("String length is %d.\n", strlen(line));

 return(0);

}

ICT159 Lecture Notes Topic 6 – Page 29

Copying Strings
 C provides a range of functions for working with strings.

 We will focus on comparing, copying and concatenating
(joining) strings.

 The contents of one string can be copied to a second

character array variable using the strcpy() function.

 This function takes to parameters and copies of value in
the second parameter to the string location specified in
the first:

strcpy(dst, src);

 HOWEVER: you must make sure that there is sufficient
room in the destination string to store the source string,
including the null terminator.

 If there is not enough room then BAD THINGS WILL

HAPPEN™

if(arraysize >= (strlen(src) + 1))

strcpy(dst, src);

else

printf("Not enough room to copy!\n");

This code checks that the size of the destination string is big
enough to take the contents of the source string plus the null
byte.

 Without this, it is possible to overflow the destination
string.

 At best, this results in an unreliable program.

 At worst, it can create very serious security problems.

Use
this!

ICT159 Lecture Notes Topic 6 – Page 30

Concatenating Strings
 Concatenating two strings means joining them together.

 This is also very common operation and is done in C

using the strcat() function.

strcat(dst, src);

 As with the strcpy() function, data is copied from the
second parameter to the first.

 However, in this function it is added on to the end of
whatever is already there, replacing the existing null
byte and null terminating the result where possible.

 HOWEVER: as with the strcpy() function, you must
make sure that there is sufficient room in the destination
string to store the source string and null byte, or
otherwise...

if((strlen(str1) + strlen(str2) + 1) <=

 arraysize)

 strcat(str1, str2);

else

printf("Strings are too large to join.\n");

This code checks that the length of the two strings joined
together (including the null byte) is not bigger than the size
of the destination string.

Use this!

ICT159 Lecture Notes Topic 6 – Page 31

Comparing Strings
 Comparing whether two strings are the same is a very

common task.

 C uses the strcmp() function to do this.

 The function returns a number based on a numerical
comparison of the two strings.

 For the purposes of what we are doing in this unit, this
means that the return value will be 0 if the two strings are
equal or non-zero if they are not.

if(strcmp(str1, str2) == 0)

 printf("Strings are the same.\n");

The following program demonstrates all of these concepts
together.

#include <stdio.h>

#include <string.h>

const int SIZE = 50;

int main()

{

 char str1[SIZE] = {'\0'};

 char str2[SIZE] = {'\0'};

 printf("Enter string: ");

 fgets(str1, SIZE, stdin);

 str1[strlen(str1) - 1] = '\0';

 printf("Making a copy of the string...\n");

ICT159 Lecture Notes Topic 6 – Page 32

 if(SIZE >= (strlen(str1) + 1))

 strcpy(str2, str1);

 else

printf("Not enough room to copy

 strings!\n\n");

 if(strcmp(str1, str2) == 0)

 printf("Strings are the same.\n\n");

 else

 printf("Strings are not the same - this

 shouldn't happen!\n\n");

 printf("Enter another string: ");

 fgets(str2, SIZE, stdin);

 str2[strlen(str2) - 1] = '\0';

 if(strcmp(str1, str2) == 0)

 printf("Strings are the same.\n\n");

 else

 printf("Strings are not the same.\n\n");

/* Note it is very important to check there

is enough space to do this */

 if((strlen(str1) + strlen(str2) + 1) <=

 SIZE)

 {

 printf("Joining strings...\n");

 strcat(str1, str2);

 printf("New string is \"%s\"\n", str1);

 }

 else

printf("Strings are too large to

 join.\n");

 return(0);
}

ICT159 Lecture Notes Topic 6 – Page 33

 COMMAND LINE ARGUMENTS
 In addition to reading in data while the program is

running, programs can also be pre-supplied with data via
the command line.

 This means the program can immediately begin doing its
job without waiting for input from the user, and can be a
very flexible way of interacting with a program.

 A simple example of how to use command line
arguments in C is given below:

#include <stdio.h>

int main(int argc, char *argv[])

{

 int i;

 if(argc == 1)

 {

 printf("No command line arguments

given!\n");

 return(1);

 }

 printf("Arguments are:\n");

 for(i=0; i < argc; i++)

 printf("%d. %s\n", i, argv[i]);

 return(0);

}

ICT159 Lecture Notes Topic 6 – Page 34

Examples:
cmdline

No command line arguments given!

cmdline abc

Arguments are:

0. cmdline.exe

1. abc

cmdline abc def ghi

Arguments are:

0. cmdline.exe

1. abc

2. def

3. ghi

Note, in the examples above, the full path to the program has
been omitted which will appear if you run it under Windows.

 Command line arguments are implemented in C using
two different parts:

 argc: is the argument counter (how many command

line arguments were supplied)

 argv: is an array of strings, each element of which is

a separate command line argument.

 Note that the details of how this work are not important
for this unit, however you are still expected to be able to
use this feature.

